llvm-toolchain-6.0 1:6.0-1ubuntu2~16.04.1 source package in Ubuntu
Changelog
llvm-toolchain-6.0 (1:6.0-1ubuntu2~16.04.1) xenial; urgency=medium * Backport to xenial. (LP: #1772632) - Don't build the Fuzzer library on powerpc. - set BINUTILS_GOLD_ARCHS to match 4.0, dropping arm64 and s390x -- Timo Aaltonen <email address hidden> Tue, 22 May 2018 13:54:13 +0300
Upload details
- Uploaded by:
- Timo Aaltonen
- Uploaded to:
- Xenial
- Original maintainer:
- Ubuntu Developers
- Architectures:
- any all
- Section:
- devel
- Urgency:
- Medium Urgency
See full publishing history Publishing
Series | Published | Component | Section | |
---|---|---|---|---|
Xenial | updates | main | devel |
Downloads
File | Size | SHA-256 Checksum |
---|---|---|
llvm-toolchain-6.0_6.0.orig-clang-tools-extra.tar.bz2 | 789.9 KiB | f5c96f38067cf0c8d81395452d0386e4715d83bd5588e49832798f6ed4b2d8fa |
llvm-toolchain-6.0_6.0.orig-clang.tar.bz2 | 12.6 MiB | d6d155313658edc8f901b1f01e353605de1c6a9a1efe6c87b2c111d23febad43 |
llvm-toolchain-6.0_6.0.orig-compiler-rt.tar.bz2 | 2.0 MiB | 7253f34ae3faee95f32ee6b4a674b87911338f49f5e14f24afb2fa693f53b09c |
llvm-toolchain-6.0_6.0.orig-lld.tar.bz2 | 833.7 KiB | cd67e62c2bfc5cef9fad2b0b1044c072956bc0ab1692616d5dd9b4034782ab1e |
llvm-toolchain-6.0_6.0.orig-lldb.tar.bz2 | 10.7 MiB | 4519601ff08e43e83dc42dbdd8de134e59e33f78466fd88f1fdfd79798f5bdef |
llvm-toolchain-6.0_6.0.orig-polly.tar.bz2 | 3.1 MiB | a256c73b80c5bc311e8dc9471ded02a48c59583a3302f62f3296d223e108b6c6 |
llvm-toolchain-6.0_6.0.orig.tar.bz2 | 28.5 MiB | 6e3439558692bbfd0bcaf4c4d1290e0c97bd710dab42860e0585303bbf67797a |
llvm-toolchain-6.0_6.0-1ubuntu2~16.04.1.debian.tar.xz | 68.6 KiB | 8d02b5b988e4a5feeb00f374b1a324c5636ebe382f2b6c303afb84895b2f2f48 |
llvm-toolchain-6.0_6.0-1ubuntu2~16.04.1.dsc | 6.8 KiB | b62f6b396290a6c82417d9e1104a24066d95b543e7d40aa2337efc84710a2d85 |
Available diffs
Binary packages built by this source
- clang-6.0: C, C++ and Objective-C compiler
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
- clang-6.0-dbgsym: debug symbols for package clang-6.0
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
- clang-6.0-doc: C, C++ and Objective-C compiler - Documentation
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the documentation.
- clang-6.0-examples: Clang examples
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang examples.
- clang-6.0-examples-dbgsym: debug symbols for package clang-6.0-examples
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang examples.
- clang-format-6.0: Tool to format C/C++/Obj-C code
Clang-format is both a library and a stand-alone tool with the goal of
automatically reformatting C++ sources files according to configurable
style guides. To do so, clang-format uses Clang's Lexer to transform an
input file into a token stream and then changes all the whitespace around
those tokens. The goal is for clang-format to both serve both as a user
tool (ideally with powerful IDE integrations) and part of other
refactoring tools, e.g. to do a reformatting of all the lines changed
during a renaming.
.
This package also provides vim and emacs plugins.
- clang-format-6.0-dbgsym: debug symbols for package clang-format-6.0
Clang-format is both a library and a stand-alone tool with the goal of
automatically reformatting C++ sources files according to configurable
style guides. To do so, clang-format uses Clang's Lexer to transform an
input file into a token stream and then changes all the whitespace around
those tokens. The goal is for clang-format to both serve both as a user
tool (ideally with powerful IDE integrations) and part of other
refactoring tools, e.g. to do a reformatting of all the lines changed
during a renaming.
.
This package also provides vim and emacs plugins.
- clang-tidy-6.0: clang-based C++ linter tool
Provide an extensible framework for diagnosing and fixing typical programming
errors, like style violations, interface misuse, or bugs that can be deduced
via static analysis. clang-tidy is modular and provides a convenient interface
for writing new checks.
- clang-tidy-6.0-dbgsym: debug symbols for package clang-tidy-6.0
Provide an extensible framework for diagnosing and fixing typical programming
errors, like style violations, interface misuse, or bugs that can be deduced
via static analysis. clang-tidy is modular and provides a convenient interface
for writing new checks.
- clang-tools-6.0: clang-based tools for C/C++ developments
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains some clang-based tools like scan-build, clangd,
clang-cl, etc.
- clang-tools-6.0-dbgsym: debug symbols for package clang-tools-6.0
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains some clang-based tools like scan-build, clangd,
clang-cl, etc.
- libclang-6.0-dev: clang library - Development package
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang headers to develop extensions over
libclang1-6.0.
- libclang-6.0-dev-dbgsym: debug symbols for package libclang-6.0-dev
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang headers to develop extensions over
libclang1-6.0.
- libclang-common-6.0-dev: clang library - Common development package
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang generic headers and some libraries
(profiling, etc).
- libclang-common-6.0-dev-dbgsym: debug symbols for package libclang-common-6.0-dev
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang generic headers and some libraries
(profiling, etc).
- libclang1-6.0: C interface to the clang library
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang library.
.
The C Interface to Clang provides a relatively small API that exposes
facilities for parsing source code into an abstract syntax tree (AST),
loading already-parsed ASTs, traversing the AST, associating physical source
locations with elements within the AST, and other facilities that support
Clang-based development tools.
- libclang1-6.0-dbg: clang library (debug)
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the debugging symbols.
- libclang1-6.0-dbgsym: debug symbols for package libclang1-6.0
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This package contains the clang library.
.
The C Interface to Clang provides a relatively small API that exposes
facilities for parsing source code into an abstract syntax tree (AST),
loading already-parsed ASTs, traversing the AST, associating physical source
locations with elements within the AST, and other facilities that support
Clang-based development tools.
- libfuzzer-6.0-dev: Library for coverage-guided fuzz testing
LibFuzzer is a library for in-process, coverage-guided, evolutionary fuzzing
of other libraries.
.
LibFuzzer is similar in concept to American Fuzzy Lop (AFL), but it performs
all of its fuzzing inside a single process. This in-process fuzzing can be
more restrictive and fragile, but is potentially much faster as there is no
overhead for process start-up.
.
The fuzzer is linked with the library under test, and feeds fuzzed inputs to
the library via a specific fuzzing entrypoint (aka 'target function'); the
fuzzer then tracks which areas of the code are reached, and generates mutations
on the corpus of input data in order to maximize the code coverage. The code
coverage information for libFuzzer is provided by LLVM's SanitizerCoverage
instrumentation.
- libfuzzer-6.0-dev-dbgsym: debug symbols for package libfuzzer-6.0-dev
LibFuzzer is a library for in-process, coverage-guided, evolutionary fuzzing
of other libraries.
.
LibFuzzer is similar in concept to American Fuzzy Lop (AFL), but it performs
all of its fuzzing inside a single process. This in-process fuzzing can be
more restrictive and fragile, but is potentially much faster as there is no
overhead for process start-up.
.
The fuzzer is linked with the library under test, and feeds fuzzed inputs to
the library via a specific fuzzing entrypoint (aka 'target function'); the
fuzzer then tracks which areas of the code are reached, and generates mutations
on the corpus of input data in order to maximize the code coverage. The code
coverage information for libFuzzer is provided by LLVM's SanitizerCoverage
instrumentation.
- liblld-6.0: LLVM-based linker, library
LLD is a new, high-performance linker. It is built as a set of reusable
components which highly leverage existing libraries in the larger LLVM
Project.
.
This package contains the LLD runtime library.
- liblld-6.0-dbgsym: debug symbols for package liblld-6.0
LLD is a new, high-performance linker. It is built as a set of reusable
components which highly leverage existing libraries in the larger LLVM
Project.
.
This package contains the LLD runtime library.
- liblld-6.0-dev: LLVM-based linker, header files
LLD is a new, high-performance linker. It is built as a set of reusable
components which highly leverage existing libraries in the larger LLVM
Project.
.
This package provides the header files to build extension over lld.
- liblld-6.0-dev-dbgsym: debug symbols for package liblld-6.0-dev
LLD is a new, high-performance linker. It is built as a set of reusable
components which highly leverage existing libraries in the larger LLVM
Project.
.
This package provides the header files to build extension over lld.
- liblldb-6.0: Next generation, high-performance debugger, library
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
.
This package contains the LLDB runtime library.
- liblldb-6.0-dbg: Next generation, high-performance debugger, debugging libraries
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
.
This package contains the LLDB runtime library debug symbols.
- liblldb-6.0-dbgsym: debug symbols for package liblldb-6.0
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
.
This package contains the LLDB runtime library.
- liblldb-6.0-dev: Next generation, high-performance debugger, header files
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
.
This package provides the header files to build extension over lldb.
- liblldb-6.0-dev-dbgsym: debug symbols for package liblldb-6.0-dev
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
.
This package provides the header files to build extension over lldb.
- libllvm6.0: Modular compiler and toolchain technologies, runtime library
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
This package contains the LLVM runtime library.
- libllvm6.0-dbg: Modular compiler and toolchain technologies, debugging libraries
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
This package contains the LLVM runtime library debug symbols.
- libllvm6.0-dbgsym: debug symbols for package libllvm6.0
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
This package contains the LLVM runtime library.
- lld-6.0: LLVM-based linker
LLD is a new, high-performance linker. It is built as a set of reusable
components which highly leverage existing libraries in the larger LLVM
Project.
- lld-6.0-dbgsym: debug symbols for package lld-6.0
LLD is a new, high-performance linker. It is built as a set of reusable
components which highly leverage existing libraries in the larger LLVM
Project.
- lldb-6.0: Next generation, high-performance debugger
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
- lldb-6.0-dbgsym: debug symbols for package lldb-6.0
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
- llvm-6.0: Modular compiler and toolchain technologies
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
The strengths of the LLVM infrastructure are its extremely
simple design (which makes it easy to understand and use),
source-language independence, powerful mid-level optimizer, automated
compiler debugging support, extensibility, and its stability and
reliability. LLVM is currently being used to host a wide variety of
academic research projects and commercial projects. LLVM includes C
and C++ front-ends, a front-end for a Forth-like language (Stacker),
a young scheme front-end, and Java support is in development. LLVM can
generate code for X86, SparcV9, PowerPC or many other architectures.
- llvm-6.0-dbgsym: debug symbols for package llvm-6.0
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
The strengths of the LLVM infrastructure are its extremely
simple design (which makes it easy to understand and use),
source-language independence, powerful mid-level optimizer, automated
compiler debugging support, extensibility, and its stability and
reliability. LLVM is currently being used to host a wide variety of
academic research projects and commercial projects. LLVM includes C
and C++ front-ends, a front-end for a Forth-like language (Stacker),
a young scheme front-end, and Java support is in development. LLVM can
generate code for X86, SparcV9, PowerPC or many other architectures.
- llvm-6.0-dev: Modular compiler and toolchain technologies, libraries and headers
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package provides the libraries and headers to develop applications
using llvm.
- llvm-6.0-dev-dbgsym: debug symbols for package llvm-6.0-dev
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package provides the libraries and headers to develop applications
using llvm.
- llvm-6.0-doc: Modular compiler and toolchain technologies, documentation
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package contains all documentation (extensive).
- llvm-6.0-examples: Modular compiler and toolchain technologies, examples
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package contains examples for using LLVM, both in developing
extensions to LLVM and in using it to compile code.
- llvm-6.0-runtime: Modular compiler and toolchain technologies, IR interpreter
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package provides the minimal required to execute programs in LLVM
format.
- llvm-6.0-runtime-dbgsym: debug symbols for package llvm-6.0-runtime
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package provides the minimal required to execute programs in LLVM
format.
- llvm-6.0-tools: Modular compiler and toolchain technologies, tools
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package provides tools for testing.
- llvm-6.0-tools-dbgsym: debug symbols for package llvm-6.0-tools
LLVM is a collection of libraries and tools that make it easy to build
compilers, optimizers, just-in-time code generators, and many other
compiler-related programs.
.
LLVM uses a single, language-independent virtual instruction set both
as an offline code representation (to communicate code between
compiler phases and to run-time systems) and as the compiler internal
representation (to analyze and transform programs). This persistent
code representation allows a common set of sophisticated compiler
techniques to be applied at compile-time, link-time, install-time,
run-time, or "idle-time" (between program runs).
.
This package provides tools for testing.
- python-clang-6.0: Clang Python Bindings
Clang project is a C, C++, Objective C and Objective C++ front-end
based on the LLVM compiler. Its goal is to offer a replacement to the
GNU Compiler Collection (GCC).
.
Clang implements all of the ISO C++ 1998, 11 and 14 standards and also
provides most of the support of C++17.
.
This binding package provides access to the Clang compiler and libraries.
- python-lldb-6.0: Next generation, high-performance debugger, python lib
LLDB is a next generation, high-performance debugger. It is built as a set of
reusable components which highly leverage existing libraries in the larger LLVM
Project, such as the Clang expression parser and LLVM disassembler.
.
This binding package provides access to lldb.