pacemaker 2.0.1-5ubuntu1 source package in Ubuntu

Changelog

pacemaker (2.0.1-5ubuntu1) focal; urgency=medium

  * Merge with Debian unstable. Remaining changes:
    - debian/patches/pacemaker_is_partof_corosync.patch: Default systemd
      unit hard-requires corosync.
      + Debian disagrees in Debian bug 887563 message 36. We could revert back
        to Debian's behaviour, but keeping the patch in this merge maintains
        existing behaviour for Ubuntu users pending any separate future
        decision.
    - d/control: Demote fence-agents to Suggests, avoiding main
      inclusion.
    - Skip autopkgtest for unprivileged containers: (LP #1828228)
      + d/t/control: mark pacemaker  test as skippable
      + d/t/pacemaker: skip if memlock can't be set to unlimited by root

pacemaker (2.0.1-5) unstable; urgency=medium

  * [17ae230] Backport three more patches from upstream fixing memory safety
    bugs.
    Clearing up fallout from the preceding security fixes.
    Thanks to Ken Gaillot <email address hidden>

 -- Rafael David Tinoco <email address hidden>  Mon, 04 Nov 2019 17:31:07 -0300

Upload details

Uploaded by:
Rafael David Tinoco
Uploaded to:
Focal
Original maintainer:
Ubuntu Developers
Architectures:
any all
Section:
admin
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
pacemaker_2.0.1.orig.tar.gz 5.3 MiB 4f0040e5c80b108900a019d9033e8bb5d4fb4bc26c6f6fd6397bd846c6461864
pacemaker_2.0.1-5ubuntu1.debian.tar.xz 66.0 KiB 8f14da31c472d8bbf3c038d0a3c903bebf0a16503eff4778be459d8cec5a3eed
pacemaker_2.0.1-5ubuntu1.dsc 3.9 KiB e620a657fc6c41151dcc7d0d28b267ce5cfb5a33a5482be87799e34f393195bf

Available diffs

View changes file

Binary packages built by this source

libcib-dev: transitional package

 This is a transitional package. It can safely be removed.

libcib27: cluster resource manager CIB library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Cluster Information Base library.

libcib27-dbgsym: debug symbols for libcib27
libcrmcluster-dev: transitional package

 This is a transitional package. It can safely be removed.

libcrmcluster29: cluster resource manager cluster library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the cluster library.

libcrmcluster29-dbgsym: debug symbols for libcrmcluster29
libcrmcommon-dev: transitional package

 This is a transitional package. It can safely be removed.

libcrmcommon34: cluster resource manager common library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the common library.

libcrmcommon34-dbgsym: debug symbols for libcrmcommon34
libcrmservice-dev: transitional package

 This is a transitional package. It can safely be removed.

libcrmservice28: cluster resource manager service library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the service library.

libcrmservice28-dbgsym: debug symbols for libcrmservice28
liblrmd-dev: transitional package

 This is a transitional package. It can safely be removed.

liblrmd28: cluster resource manager LRMD library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Local Resource Manager Daemon library.

liblrmd28-dbgsym: debug symbols for liblrmd28
libpe-rules26: cluster resource manager Policy Engine rules library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Policy Engine rules library.

libpe-rules26-dbgsym: debug symbols for libpe-rules26
libpe-status28: cluster resource manager Policy Engine status library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Policy Engine status library.

libpe-status28-dbgsym: debug symbols for libpe-status28
libpengine-dev: transitional package

 This is a transitional package. It can safely be removed.

libpengine27: No summary available for libpengine27 in ubuntu focal.

No description available for libpengine27 in ubuntu focal.

libpengine27-dbgsym: No summary available for libpengine27-dbgsym in ubuntu focal.

No description available for libpengine27-dbgsym in ubuntu focal.

libstonithd-dev: transitional package

 This is a transitional package. It can safely be removed.

libstonithd26: cluster resource manager STONITH daemon library

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the STONITH daemon library.

libstonithd26-dbgsym: debug symbols for libstonithd26
libtransitioner25: No summary available for libtransitioner25 in ubuntu focal.

No description available for libtransitioner25 in ubuntu focal.

libtransitioner25-dbgsym: No summary available for libtransitioner25-dbgsym in ubuntu focal.

No description available for libtransitioner25-dbgsym in ubuntu focal.

pacemaker: cluster resource manager

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Pacemaker daemons directly interacting with
 the cluster stack.

pacemaker-cli-utils: cluster resource manager command line utilities

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains those command line utilities of the Pacemaker
 cluster manager which work on remote nodes as well.

pacemaker-cli-utils-dbgsym: debug symbols for pacemaker-cli-utils
pacemaker-common: cluster resource manager common files

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains common infrastructure and data files for the
 Pacemaker daemons and utilities.

pacemaker-dbgsym: debug symbols for pacemaker
pacemaker-dev: cluster resource manager development

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the Pacemaker libraries.

pacemaker-doc: cluster resource manager HTML documentation

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains
  * the Pacemaker API documentation generated by Doxygen,
  * the Clusters from Scratch book,
  * the Pacemaker Administration book,
  * the Pacemaker Development book,
  * the Pacemaker Explained book and
  * the Pacemaker Remote book.

pacemaker-remote: cluster resource manager proxy daemon for remote nodes

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Pacemaker proxy daemon, which simulates cluster
 services on a node not running the cluster stack. Such "remote" nodes can
 run resources but don't participate in the quorum. This package is
 mutually exclusive with Pacemaker proper.

pacemaker-remote-dbgsym: debug symbols for pacemaker-remote
pacemaker-resource-agents: cluster resource manager general resource agents

 At its core, Pacemaker is a distributed finite state
 machine capable of co-ordinating the startup and recovery of inter-related
 services across a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd) and
 can accurately model the relationships between them (colocation, ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains Pacemaker resource agents not requiring access
 to the cluster stack, thus also usable by the remote daemon.