pytables 3.5.2-5 source package in Ubuntu

Changelog

pytables (3.5.2-5) unstable; urgency=medium

  * Team upload.
  * Drop python2 support; Closes: #937554

 -- Sandro Tosi <email address hidden>  Tue, 17 Dec 2019 16:17:38 -0500

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any all
Section:
python
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
pytables_3.5.2-5.dsc 2.8 KiB 4e36353d8a62ae7cb5789826bf4ce9fe569962f51ce264935dbb7ca5fdf27e8d
pytables_3.5.2.orig.tar.gz 4.2 MiB e4fc6f1194f02a8b10ff923e77364fb70710592f620d7de35f4d4e064dc70e91
pytables_3.5.2-5.debian.tar.xz 19.1 KiB 507e92c8c8cae73dd8ef11bd3c87dec2fe7e42910af7bb81da9cecaa68bb123d

Available diffs

No changes file available.

Binary packages built by this source

python-tables-data: hierarchical database for Python based on HDF5 - test data

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package includes daya fils used for unit testing.

python-tables-doc: hierarchical database for Python based on HDF5 - documentation

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package includes the manual in PDF and HTML formats.

python3-tables: hierarchical database for Python3 based on HDF5

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This is the Python 3 version of the package.

python3-tables-dbg: hierarchical database for Python 3 based on HDF5 (debug extension)

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package contains the extension built for the Python 3 debug interpreter.

python3-tables-lib: hierarchical database for Python3 based on HDF5 (extension)

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package contains the extension built for the Python 3 interpreter.