pytables 3.6.1-6 source package in Ubuntu

Changelog

pytables (3.6.1-6) unstable; urgency=medium

  [ Stefano Rivera ]
  * Handle Python 3.10 in the Sphinx build, missed in 5.1.

  [ Antonio Valentino ]
  * Update d/python3-tables.lintian-overrides.
  * Update d/copyright.

 -- Antonio Valentino <email address hidden>  Fri, 26 Nov 2021 08:12:25 +0000

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any all
Section:
python
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
pytables_3.6.1-6.dsc 2.7 KiB 787951309c8bf33c0226cf1ac3fdd67ce1f7888d50f25b5686782d75a0b21c8c
pytables_3.6.1.orig.tar.gz 4.2 MiB 4cea86bab5bcb5423a07c7951b8c65e24b674e0dcec0e448d434829eff5f18d0
pytables_3.6.1-6.debian.tar.xz 22.6 KiB 2cefc657520627e3d2d3c945b45bd1767cf6cfd2520205a9110a3287fe9f4cc4

No changes file available.

Binary packages built by this source

python-tables-data: hierarchical database for Python based on HDF5 - test data

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package includes daya fils used for unit testing.

python-tables-doc: hierarchical database for Python based on HDF5 - documentation

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package includes the manual in PDF and HTML formats.

python3-tables: hierarchical database for Python3 based on HDF5

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This is the Python 3 version of the package.

python3-tables-lib: hierarchical database for Python3 based on HDF5 (extension)

 PyTables is a package for managing hierarchical datasets and designed
 to efficiently cope with extremely large amounts of data.
 .
 It is built on top of the HDF5 library and the NumPy package. It
 features an object-oriented interface that, combined with C extensions
 for the performance-critical parts of the code (generated using
 Cython), makes it a fast, yet extremely easy to use tool for
 interactively save and retrieve very large amounts of data. One
 important feature of PyTables is that it optimizes memory and disk
 resources so that they take much less space (between a factor 3 to 5,
 and more if the data is compressible) than other solutions, like for
 example, relational or object oriented databases.
 .
  - Compound types (records) can be used entirely from Python (i.e. it
    is not necessary to use C for taking advantage of them).
  - The tables are both enlargeable and compressible.
  - I/O is buffered, so you can get very fast I/O, specially with
    large tables.
  - Very easy to select data through the use of iterators over the
    rows in tables. Extended slicing is supported as well.
  - It supports the complete set of NumPy objects.
 .
 This package contains the extension built for the Python 3 interpreter.

python3-tables-lib-dbgsym: debug symbols for python3-tables-lib