r-cran-spatstat 3.0-6-1 source package in Ubuntu

Changelog

r-cran-spatstat (3.0-6-1) unstable; urgency=medium

  * New upstream version
  * dh-update-R to update Build-Depends (routine-update)

 -- Andreas Tille <email address hidden>  Tue, 27 Jun 2023 18:53:49 +0200

Upload details

Uploaded by:
Debian R Packages Maintainers
Uploaded to:
Sid
Original maintainer:
Debian R Packages Maintainers
Architectures:
any
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Mantic release universe misc

Downloads

File Size SHA-256 Checksum
r-cran-spatstat_3.0-6-1.dsc 2.2 KiB ff6ceb0a0edeeb60ae763d18e35fd73bda13bc86f9390776667a6d2fb0e41735
r-cran-spatstat_3.0-6.orig.tar.gz 3.7 MiB e7143d919c4c81a9b4d3e041f54907722d9d7b8cc5e0d91f3d4297155451976e
r-cran-spatstat_3.0-6-1.debian.tar.xz 4.7 KiB 432219a3dcfafb0d6f38a4f3a2b771726ae717f42b2086297f2e76f2e5c2093c

Available diffs

No changes file available.

Binary packages built by this source

r-cran-spatstat: GNU R Spatial Point Pattern analysis, model-fitting, simulation, tests

 A GNU R package for analysing spatial data, mainly Spatial Point Patterns,
 including multitype/marked points and spatial covariates, in any
 two-dimensional spatial region. Contains functions for plotting spatial
 data, exploratory data analysis, model-fitting, simulation, spatial sampling,
 model diagnostics, and formal inference. Data types include point patterns,
 line segment patterns, spatial windows, and pixel images. Point process
 models can be fitted to point pattern data. Cluster type models are fitted
 by the method of minimum contrast. Very general Gibbs point process models
 can be fitted to point pattern data using a function ppm similar to lm or glm.
 Models may include dependence on covariates, interpoint interaction and
 dependence on marks. Fitted models can be simulated automatically. Also
 provides facilities for formal inference (such as chi-squared tests) and model
 diagnostics (including simulation envelopes, residuals, residual plots and Q-Q
 plots).