ssreflect 1.14.0-11 source package in Ubuntu

Changelog

ssreflect (1.14.0-11) unstable; urgency=medium

  * Bump standards-version to 4.6.1.

 -- Julien Puydt <email address hidden>  Wed, 01 Jun 2022 15:24:05 +0200

Upload details

Uploaded by:
Debian OCaml Maintainers
Uploaded to:
Sid
Original maintainer:
Debian OCaml Maintainers
Architectures:
any
Section:
math
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
ssreflect_1.14.0-11.dsc 2.5 KiB b6353f0f0e5b4ae6284b7eb9520936f57948ae46ef0b1500d51b26527692fcbc
ssreflect_1.14.0.orig.tar.gz 1.3 MiB d259cc95a2f8f74c6aa5f3883858c9b79c6e87f769bde9a415115fa4876ebb31
ssreflect_1.14.0-11.debian.tar.xz 12.2 KiB 81eb0b51f6fcb75fd06dca48bf46328e3c1e5b83d786ab07c12a87553275a6f8

Available diffs

No changes file available.

Binary packages built by this source

libcoq-mathcomp: Mathematical Components library for Coq (all)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the full Mathematical Components library.

libcoq-mathcomp-algebra: Mathematical Components library for Coq (algebra)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the algebra part of the library (ring, fields,
 ordered fields, real fields, modules, algebras, integers, rationals,
 polynomials, matrices, vector spaces...).

libcoq-mathcomp-character: Mathematical Components library for Coq (character)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the character theory part of the library
 (group representations, characters and class functions).

libcoq-mathcomp-field: Mathematical Components library for Coq (field)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the field theory part of the library
 (field extensions, Galois theory, algebraic numbers, cyclotomic
 polynomials).

libcoq-mathcomp-fingroup: Mathematical Components library for Coq (finite groups)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the finite groups theory part of the library
 (finite groups, group quotients, group morphisms, group presentation,
 group action...).

libcoq-mathcomp-solvable: Mathematical Components library for Coq (finite groups II)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the second finite groups theory part of the
 library (abelian groups, center, commutator, Jordan-Holder series,
 Sylow theorems...).

libcoq-mathcomp-ssreflect: Mathematical Components library for Coq (small scale reflection)

 The Mathematical Components Library is an extensive and coherent
 repository of formalized mathematical theories. It is based on the
 Coq proof assistant, powered with the Coq/SSReflect language.
 .
 These formal theories cover a wide spectrum of topics, ranging from
 the formal theory of general-purpose data structures like lists,
 prime numbers or finite graphs, to advanced topics in algebra.
 .
 The formalization technique adopted in the library, called "small
 scale reflection", leverages the higher-order nature of Coq's
 underlying logic to provide effective automation for many small,
 clerical proof steps. This is often accomplished by restating
 ("reflecting") problems in a more concrete form, hence the name. For
 example, arithmetic comparison is not an abstract predicate, but
 rather a function computing a Boolean.
 .
 This package installs the small scale reflection language extension
 and the minimal set of libraries to take advantage of it (sequences,
 booleans and boolean predicates, natural numbers and types with decidable
 equality, finite types, finite sets, finite functions, finite graphs,
 basic arithmetics and prime numbers, big operators...).