Binary package “shogun-elwms-static” in ubuntu precise

Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the
 eierlegendewollmilchsau package, providing interfaces and interoperability
 commands to R, Octave and Python all at once.