shogun 1.1.0-4ubuntu1 source package in Ubuntu

Changelog

shogun (1.1.0-4ubuntu1) precise; urgency=low

  * Merges from Debian unstable (LP: #914523).
  * New patch fix-ftbfs-as-needed.patch: Fix FTBFS with
    ld --as-needed in Makefile (closes: #657434)
  * Drop changes:
    - Build-depend on doxygen-latex, now in debian
    - Build for python2.7, debian has set X-Python-Version: >= 2.5

shogun (1.1.0-4) unstable; urgency=low

  [ Jo Shields ]
  * debian/rules:
    + Include workaround for CDBS throwing away vital packaging data
      required by dh_clideps to resolve dependencies.
  * debian/control:
    + Scrap unneeded manual dependencies on libmono-corlib4.0-cil and
      libshogun11 (Closes: #657096).

  [ Soeren Sonnenburg ]
  * Build depend on libhdf5-dev (>= 1.8.8~) | libhdf5-serial-dev instead of
  just libhdf5-dev.
  * Temporarily drop octave build dependencies from debian/control.

shogun (1.1.0-3) unstable; urgency=low

  * Make csharp package depend on libmono-corlib4.0-cil; remove csharp:Depends
  or csharp:Provides and use cli:Depends in debian/control (Closes: #656757).

shogun (1.1.0-2) unstable; urgency=low

  * Build depend on libhdf5-dev instead of libhdf5-serial-dev to accommodate
  hdf5 transition.
  * Build depend on mono-devel and cli-common-dev instead of mono2.0-devel and
  use include cli.make in debian rules. (Closes: #656757).
  * Use dmcs instead of gmcs (Closes: #656756).

shogun (1.1.0-1) unstable; urgency=low

  * New upstream version with major feature enhancements.
   - This fixes liblzma5 transition (Closes: #647753)
   - Require clang to compile package as gcc/g++ require >3GB to compile the
   package (Closes: #645249).
   - Remove patches integrated upstream.
   - Since octave is failing to compile with clang - temporarily disable
   shogun's octave interface.
  * Really replace doxygen and texlive-* build dependencies with
    doxygen-latex (Closes: #616279).

shogun (1.0.0-1) unstable; urgency=low

  * New upstream version with major feature enhancements.
    - Add various upstream patches to fix installation
    - Rename static interface packages to shogun-interface-static
    - Create new modular interface packages for java, lua, ruby, c#
    - Install libshogun examples also for libshogun-dev package
    - Convert package to use dh_python2 (Closes: #632249).
    - Enable python packaging for multiple python versions.
    - Update copyright file to match new contributions.
    - Bump standards version to 3.9.2 (no changes required).
  * Replace doxygen and texlive-* build dependencies with
    doxygen-latex (Closes: #616279)
  * Acknowledging non-maintainer upload fixing FTBS with newer gcc's (How
    could this ever compile??!)
 -- Leo Iannacone <email address hidden>   Wed, 25 Jan 2012 23:20:58 +0100

Upload details

Uploaded by:
Leo Iannacone
Sponsored by:
Daniel Holbach
Uploaded to:
Precise
Original maintainer:
Ubuntu Developers
Architectures:
any all
Section:
science
Urgency:
Low Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
shogun_1.1.0.orig.tar.gz 3.8 MiB 1497d4ada2c5db8b8419f0f7040c0507d0462708d727ba01296d7ee4e4eb474a
shogun_1.1.0-4ubuntu1.debian.tar.gz 18.4 KiB e36f5a446fe2a37f09ad27ca47acfe27da16f4ece3bc56d5dbc846d95ce4c746
shogun_1.1.0-4ubuntu1.dsc 2.6 KiB 2e5e958fc36a36ab6254076d156f438b146a13e56d3b2d212c5537bf1d1e36f0

View changes file

Binary packages built by this source

libshogun-dev: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This package
 includes the developer files required to create stand-a-lone executables.

libshogun11: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the core
 library with the machine learning methods and ui helpers all interfaces are
 based on.

shogun-cmdline-static: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the Readline
 package.

shogun-csharp-modular: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the modular
 csharp package employing swig.

shogun-dbg: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This package
 contains debug symbols for all interfaces.

shogun-doc-cn: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the
 Chinese user and developer documentation.

shogun-doc-en: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the English
 user and developer documentation.

shogun-elwms-static: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the
 eierlegendewollmilchsau package, providing interfaces and interoperability
 commands to R, Octave and Python all at once.

shogun-java-modular: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the modular
 java package employing swig.

shogun-lua-modular: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the modular
 lua package employing swig.

shogun-python-modular: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the modular
 Python package employing swig.

shogun-python-static: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the static
 Python package without using swig.

shogun-r-static: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the R
 package.

shogun-ruby-modular: Large Scale Machine Learning Toolbox

 SHOGUN - is a new machine learning toolbox with focus on large scale kernel
 methods and especially on Support Vector Machines (SVM) with focus to
 bioinformatics. It provides a generic SVM object interfacing to several
 different SVM implementations. Each of the SVMs can be combined with a variety
 of the many kernels implemented. It can deal with weighted linear combination
 of a number of sub-kernels, each of which not necessarily working on the same
 domain, where an optimal sub-kernel weighting can be learned using Multiple
 Kernel Learning. Apart from SVM 2-class classification and regression
 problems, a number of linear methods like Linear Discriminant Analysis (LDA),
 Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
 train hidden markov models are implemented. The input feature-objects can be
 dense, sparse or strings and of type int/short/double/char and can be
 converted into different feature types. Chains of preprocessors (e.g.
 substracting the mean) can be attached to each feature object allowing for
 on-the-fly pre-processing.
 .
 SHOGUN comes in different flavours, a stand-a-lone version and also with
 interfaces to Matlab(tm), R, Octave, Readline and Python. This is the modular
 ruby package employing swig.